Corbin 39

Hull design - preliminary analysis
working slides to support collaboration of all of us
with many thanks to Jean-François Masset

Broader goals

- To better understand the various design \& technical operational aspects of the Corbin 39 (both sailing \& stability);
- To seek to understand the extent of, and curability of, the weather helm issue (especially to help mk1 owners);
- To create the minimum items needed as part of the EU RCD Technical File (i.e. GZ curve and STIX);
- To properly document the design for reference in the future ;
- To learn!

Introduction

Jean-François Masset

- Is a retired naval architect assisting us as a volunteer.
- He created the free Gene-Hull spreadsheet program we are using to conduct the preliminary analysis.
- Further analysis will be needed, but this is a start.

Corbin 39

- The actual hulls are all from the same mould. But there are many fitting out and rigging options.
- The original hull lines drawing by Robert Dufour are subject to copyright restrictions and are drawn in imperial measurements. The original Robert Dufour rigging drawings are freely available.
- There may be inconsistencies in the Marius Corbin manufacturer's brochures and drawings.
- So the first task is to create new hull lines drawings and a hull model, and to minimise the inconsistencies, and to create a validated basis for further work.
- These slides help explain what we are doing and help everyone to contribute.

Side elevation of a mk2 pilothouse version with cutter rig - note the hull is common to all Corbin 39

STA 10 at DWL is the datum point for many measurements. It is at the aft intersection of the hull with the rudder \& skeg STA 10

39

Question 1.

We are trying to establish how well the as-designed hull drawings correspond to the as-built Corbin 39 hulls. You can assist us with this.
To do this we can compare the calculated volume of the submerged part of the hull at its design draught, with the actual position of the waterline of the hull and its actual weight. This assists us to validate the hull model.

The volume of the submerged part of the hull is of course a function of the weight of the boat when hanging in a crane hook, and the density of the water in which it was previously.

At this stage any estimated or observed data is helpful, even if we cannot yet conduct proper tests.

QUESTION 1: So the question is fourfold:

a. Where is the waterline on your Corbin ?
b. Are you measuring your waterline when floating in fresh water or in salt water ?
c. How much does your Corbin weigh when you lift her in/out ?
d. What is the 'condition' of your Corbin when you are weighing her ?

The ideal weighing \& waterline measurement condition is the "lightship" condition, which is the design waterline on the drawings. This is when the vessel is complete and ready for service in every respect, including permanent ballast, (normal, but not excessive) spare parts, lubricating oil, and working stores but is without fuel, cargo, drinking or washing water, officers, crew, passengers, their effects, temporary ballast or any other variable load. If you cannot give a weight in the lightship condition please state what the actual condition is and we can estimate a correction.

You can state your waterline position any way you like. So you could state the actual exact draught (for info: the design draught in lightship condition was nominally $5^{\prime} 6^{\prime \prime}=1676 \mathrm{~mm}$) and also comment whether your keel has been modified (as some have been). Or you could give a freeboard at one or more of the three noted positions (stern, bow, and the freeboard low point which is station \#8 midway between keel aft edge and skeg fwd edge). Or you could comment on where the 'scumline' sits in relation to the aft datum point which is at the intersection of the stern and the rudder skeg.

EXAMPLE ANSWER

As an example for my \#123, "Bockra" I was given an approximate "hook weight" by the crane operator at the last lift-out of $15,000 \mathrm{~kg}$, and then I destored about 1,000 kg of excess spare parts, excess tools, clutter, fuel, and water to bring her to approximately 14,000 kg in lightship. I'will check more carefully when I next do a lift as those are very approximate numbers. And on Bockra in the heavier condition the scumline is approximately 6 " (150mm) above the stern datum point when floating in seawater (see photos).

What comes next

A few years ago I did this quick try at doing the hull lines in Delftship, using only easy-to-locate internet data. Now we are trying to do this for real, and then conduct all the interesting analysis that this will enable.

Scum line is waterline on

Sailplans - Corbin 39 Mk1 shortmast 46' 'cruising' cutters with single spreader - measurements for calculations

39
WARNING : These measurements are taken from old drawings and are intended for performance/design calculation purposes only. Do not assume they are correct for equipment / spar / sail ordering or manufacture.
Also not all Corbins used the same mast \& spar suppliers, or even the 'standard' dimensions. Measure your own boat !

39
04/04/2020

Sailplans - Corbin 39 Mk1 tallmast 51' cutters with double spreader - measurements for calculations

WARNING : These measurements are taken from old drawings and are intended for performance/design calculation purposes only.

Sailplans - Corbin 39 Mk1 ketch with 46' single spreader mast - measurements for calculations

WARNING : These measurements are taken from old drawings and are intended for performance/design calculation purposes only.
Do not assume they are correct for equipment / spar / sail ordering or manufacture.
Also not all Corbins used the same mast \& spar suppliers, or even the 'standard' dimensions. Measure your own boat !

04/04/2020
(C) Corbin 39 Association

		inch	ft inch	mm
	stern vertical to mast centre (x)	284.2	$23 \mathrm{ft}$.8.2 in .	7,219
	stern vertical to bow (x)	463.5	38 ft .7 .5 in .	11,773
	stern vertical to bowsprit (x)		-	
	DWL to mast foot (z)	54.0	$4 \mathrm{ft}$.6 in .	1,372
	DWL to bow (z)	62.0	5 ft .2 in .	1,575
	DWL to boom (z)	123.0	10 ft .3 in .	3,124
	boom length (x)	173.0	14 ft . 5 in.	4,394
	mast height from mast foot (z)	552.0	46 ft .0 in .	14,021
	mast height above DWL (z)	606.0	50 ft .6 in .	15,392
1	Foretriangle height	550.4	45 ft .10 .4 in.	13,980
J	Foretriangle base	174.0	$14 \mathrm{ft}$.6 in .	4,420
	100\% triangle area, theoretical		332.5 sq ft	30.9 m 2
P	Mainsail hoist	483.0	40 ft .3 in .	12,268
E	Mainsail foot	172.0	14 ft .4 in .	4,369
	100\% triangle area, theoretical		288.5 sq ft	26.8 m2
ly	Inner staysail height	340.0	$28 \mathrm{ft}$.4 in .	8,636
Jy	Inner staysail base	112.0	$9 \mathrm{ft}$.4 in .	2,845
	100\% triangle area, theoretical		132.2 sq ft	12.3 m2
EY	Mizzen mainsail foot	93.0	7 ft .9 in.	2,362
PY	Mizzen mainsail hoist	363.0	30 ft .3 in .	9,220
	100\% triangle area, theoretical		117.2 sq ft	10.9 m 2
	100\% triangle area, total theoretical		753.2 sq ft	70 m 2
ISP	Spinnaker halyard elevation			
TPS/STL	Bowsprit length			
	100\% triangle area		0 sqft	0 m 2
	mizzen mast height from mast foot	398.0	33 ft 2 in .	10,109
	mizzen mast boom height above DWL	96.5	8 ft .0 .5 in .	2,451

Sailplans - Corbin 39 Mk1 modified cutter with \& bowsprit - measurements for calculations

See 'collected' tab
in spreadsheet

Sailplans - Corbin 39 Mk2 cutter with double spreader - measurements for calculations

WARNING : These measurements are taken from old drawings and are intended for performance/design calculation purposes only. Do not assume they are correct for equipment / spar / sail ordering or manufacture.
Also not all Corbins used the same mast \& spar suppliers, or even the 'standard' dimensions. Measure your own boat! NOTE : The mast location shown in this drawing (which is by Corbin, not Dufour) does not correspond with information from owners. For performance purposes the information from owners has been shown in the table and is used in calculations.

39
04/04/2020

		inch	ft inch	mm
	stern vertical to mast centre (x)	284.2	23 ft .8 .2 in .	7,219
	stern vertical to bow (x)	463.5	38 ft .7 .5 in .	11,773
	stern vertical to bowsprit (x)	499.5	41 ft .7 .5 in .	12,687
	DWL to mast foot (z)	54.0	4 ft .6 in.	1,372
	DWL to bow (z)	62.0	5 ft . 2 in .	1,575
	DWL to boom (z)	118.0	9 ft . 10 in.	2,997
	boom length (x)	212.0	17 ft .8 in.	5,385
	mast height from mast foot (z)	594.0	49 ft .6 in .	15,088
	mast height above DWL (z)	606.0	50 ft .6 in.	15,392
1	Foretriangle height	594.0	49 ft .6 in.	15,088
J	Foretriangle base	235.1	19 ft .7 .1 in .	5,972
	100\% triangle area, theoretical		484.9 sq ft	45 m 2
P	Mainsail hoist	504.0	42 ft .0 in .	12,802
E	Mainsail foot	210.0	17 ft .6 in.	5,334
	100\% triangle area, theoretical		367.5 sq ft	34.1 m2
ly	Inner staysail height	416.5	34 ft .8 .5 in .	10,579
Jy	Inner staysail base	164.0	$13 \mathrm{ft}$.8 in .	4,166
	100\% triangle area, theoretical		237.2 sq ft	22 m 2
EY	Mizzen mainsail foot			
PY	Mizzen mainsail hoist			
	100\% triangle area, theoretical		0 sqft	0 m 2
	100\% triangle area, total theoretical		1089.6 sq ft	101.2 m 2
ISP	Spinnaker halyard elevation			
TPS/STL	Bowsprit length			

Collected

See 'collected' tab in spreadsheet for readable version!

